CHEMISTRY (CH)

CH 1010 Majoring and Working in Chemistry (0.5)
An introduction to the field of chemistry, the requirements of Chemistry and Biochemistry degrees, and the range of possible careers with these degrees. Intended for all newly-declared chemistry and biochemistry majors, including first year students or those interested in majoring in chemistry. Elective for transfer students entering with 24 or more credits. Falls. Pass/No Pass.

CH 1050 Laboratory Safety (1)
Principles of safety in chemistry, biology and physics lab field settings. Procedures of accident prevention, chemical storage and treatment of fires and spills. Designed for science majors and particularly science teachers. Open only to science and education majors. Falls and Springs.

CH 1335 Problem Solving in General Chemistry I (2)
Prerequisite(s): CH 1050 (may be concurrent) and (CH 2330 or CH 2335).
A companion course to be taken concurrently with CH 2335 and intended for students with limited or no experience in chemistry. Presents basic chemical and general scientific concepts, including the metric system, the periodic table, balanced chemical equations, stoichiometry, and the mole. Falls. Corequisite(s): CH 2335.

CH 1340 Problem Solving in General Chemistry II (1)
A companion course to be taken concurrently with CH 2340. Intended for students with limited experience in chemistry. Covers the fundamental principles and theories presented in General Chemistry II, with an emphasis on solving the common problems seen in solutions chemistry, thermodynamics, kinetics, chemical equilibrium, acid-base chemistry, electrochemistry, and nuclear chemistry. Corequisite(s): CH 2335.

CH 2010 The Literature and Ethics of Chemistry (0.5)
An introduction to the literature of chemistry and the ethics of research. Topics include an overview of chemical literature, performing literature searches, finding chemical information in journals, an introduction to professional scientific/chemical writing, and professional ethics of researching and publishing. Required of all chemistry and biochemistry majors, typically taken in the sophomore year. Springs. Pass/No Pass.

CH 2250 Techniques in Laboratory Chemistry (2)
Develops the technical skills which insure the ability to carry out accurate and precise laboratory experiments, particularly those involving analysis. Some of the skills included are mass and volume measurements, solution preparation, titration, potentiometry, buffer preparation colorimetry and statistical data treatment. Additional course fee required. Springs. Prerequisite(s): CH 1050 (may be concurrent) and (CH 2330 or CH 2335).

CH 2335 General Chemistry I (4)
Fundamental principles and theories of chemistry including intermolecular forces, atomic and molecular structure, chemical reactions and thermochemistry. The laboratory component includes basic laboratory techniques and complements and reinforces classroom concepts. Not open to students who have earned credit for CH 2130 and CH 2230 or CH 2330. Additional course fee required. Falls. Prerequisite(s): CH 1050. Corequisite(s): CH 1335 if student does not meet the

CH 2340 General Chemistry II (4)
Fundamental principles and theories of chemistry including equilibrium, thermodynamics, electrochemistry, and kinetics. The laboratory component introduces basic laboratory techniques and complements and reinforces classroom concepts. Not open to students who have earned credit for CH 2140 and CH 2240. Additional course fee required. Springs. Prerequisite(s): CH 2330 or CH 2335.

CH 3011 Introduction to Research in Chemistry (1)
A discussion-based course that introduces students to research in chemistry and its potential role in their career path. Students begin the process of developing an independent research project by selecting an area of chemistry research, choosing a mentor, and completing a literature search. Required for all chemistry and biochemistry students, typically taken in the Junior year. Falls. Prerequisite(s): CH 2010.

CH 3035 Biochemistry I (4)
The major chemical compounds present in living things and the chemical reactions they undergo. Considers dynamic aspects of biochemistry as well as material features. May be taken as BI 3035. Additional course fee required. Falls. (INCO) (INCP)
Prerequisite(s): CH 3370.

CH 3210 Integrated Laboratory Experience (2)
This course focuses on the design and initial implementation of laboratory research projects. Students are expected to work on semi-independent laboratory or computer-based projects done under the mentorship of chemistry faculty members. A major objective of the course is to provide an introductory experience designed to set the foundation for the capstone senior research or internship experience. Additional course fee required. Springs. Prerequisite(s): CH 3011, Junior status.

CH 3300 Organic Chemistry I (4)
Bonding principles, structure and nomenclature, synthesis and reactions of alkanes, alkenes, alkynes, alcohols, ethers and alkyl halides along with appropriate mechanism and stereochemistry, and spectroscopic methods. The laboratory component includes the preparation, purification, and identification of organic compounds, in most cases using microscale techniques. Both standard and instrumental methods are used. Not open to students who have earned credit for CH 3310 and CH 3330. Additional course fee required. Falls. Prerequisite(s): (CH 2330 and CH 2340) or (CH 2335 and CH 2340).

CH 3380 Organic Chemistry II (4)
Continuation of CH 3370. Nomenclature, reactions and synthesis of conjugated dienes, aromatics, organometallics, phenols, aldehydes and ketones, carboxylic acids and derivatives, and amines. Mechanisms include electrophilic aromatic substitution and nucleophilic addition. The laboratory component involves synthesis, reactions and spectroscopic identification of compounds studied in the course. Not open to students who have earned credit for CH 3320 and CH 3350. Additional course fee required. Springs. Prerequisite(s): CH 3370.
CH 3400 Instrumental Analysis (4)
Modern chemical analysis in large part involves the use of instruments. Students gain insight into the theory and operation of such instruments. An understanding of the operating parameters which must be controlled in order to make results meaningful and the types of analyses to which each instrument can be applied, including environmental and biochemical systems is emphasized. Additional course fee required. Spring of even years. (TECO)
Prerequisite(s): CH 2250 and CH 3370.

CH 3410 Physical Chemistry: Thermodynamics and Kinetics (4)
The field of physical chemistry and the behavior of matter interpreted by an understanding of physicochemical principles. Topics include properties of gases and solutions, thermodynamics, equilibria, and kinetics. Additional course fee required. Fall of even years. (WRCO)
Prerequisite(s): [(CH 2330 and CH 2340) or (CH 2335 and CH 2340)] and [(MA 2490 and MA 2500) or (MA 2550 and MA 2560) may be concurrent].

CH 3465 Physical Chemistry: Quantum Mechanics and Spectroscopy (4)
Theory and applications of quantum mechanics to atomic and molecular structure, bonding, and spectroscopy. Introduction to statistical mechanics. Additional course fee required. Spring of odd years.
Prerequisite(s): [(CH 2330 and CH 2340) or (CH 2335 and CH 2340)] and [(MA 2490 and MA 2500) or (MA 2550 and MA 2560)].

CH 3500 Inorganic Chemistry (4)
Descriptive chemistry of the inorganic elements supported by the theories needed to understand it. Particular attention is given to bonding, acid-base theories, oxidation-reduction and coordination chemistry. Laboratory presents classical methods in inorganic synthesis and characterization. Additional course fee required. Fall of odd years.
Prerequisite(s): CH 2340.

CH 3600 Environmental Chemistry (4)
Studies the chemistry of air and water. Particular emphasis placed on the pollution problem and its solution. Topics include the ozone depletion problem, the greenhouse effect, acid rain, sewage and waste disposal, chlorinated chemicals and metals in the environment. Additional course fee required. Springs. (INCO) (INCP)
Prerequisite(s): (CH 2330 and CH 2340) or (CH 2335 and CH 2340); Junior status.

CH 4025 Biochemistry II (4)
A continuation of the study of the molecular basis of biological processes. Topics include photosynthesis, glycogen and fatty acid metabolism and protein turnover, and biosynthesis including nucleic acid and protein synthesis. Additional course fee required. Spring of even years.
Prerequisite(s): (BI 3020 or BI 3035) or (CH 3020 or CH 3035).

CH 4150 Air Quality (3)
Encompasses an extensive overview of the science of Air Quality. Topics include atmospheric chemistry, air quality meteorology and forecasting techniques, air pollution sources, sinks and effects (atmospheric, environmental), including an examination of historical and current policy issues relevant to each topic. May be taken as CH 4150. Springs Odd. (INCO) (INCP)
Prerequisite(s): MT 2110, CH 2140, and MA 2550 or MA 2490 or permission of instructor. Junior status. (INCO) (INCP)

CH 4330 Science in Secondary School (3)
See BI 4330 for course description. Does not satisfy a 3000/4000 level Chemistry elective. Last offering Fall 2018.